======================COMPONENTS_THERMAL=============================== zener 3.5mV/C resister 20%/100C vbe -2.2mV at 1ua and -1.5 at 2mA... .2mV per decade ----------------------Thermocouple------------------------------- Type Materials Color Tem J +iron-constantan white/red 0C=>750C K +NiChrom-NiAl Yellow/red -200C=>1250C T +copper-constantan blue/red -200C=>350C E +NiChrom-copperNi purple/red -200C=>900C S +PlatinRhoduium-Platin black/red 0C=>1450C R +PlatinRhoduium-Platin black/red 0C=>1450C B +PlatinRhoduium-Platin black/red 0C=>1700C Cu-Ag 0.3uV/C Cu-Au 0.3uV/C Cu-cd Sn 0.3uV/C Cu-Pb/Sn 2uV/C Cu-Si 400uV/C Cu-kovar 40uV/C Brass 3.9 0.002 (66 Cu 34 Zn) Chromax 100 3E-04 (15 Cr 35 Ni 50 Fe) Constantan 44.2 2E-04 (55 Cu 45 Ni) German Silv 33 4E-04 (18 Ni) Kovar A 45-85 (29Ni 17Co .3Mn 46Fe) Nichrome 100 2E-04 (65 Ni 12 Cr 23 Fe) Steel 13-22 0.003 (.4 C) Stainless 90 (.1C 18 Cr 8 Ni) . SENSOR COMPARISON CHART Sensor Type Typical Temp Midramge Non- Sensitivity Range Accuracy Linearity Base Metal Therrno 40 to 70 -270 to 1.1 to 1 to 5% couples J,K,T,E,N uV/C 1372C 2.2C Platinum Alloy Thermo 7 to 12 -50 to 0.6 to 1 to 5% couples Types R,S,B uV/C 1820C 1.50C Tungsten Alloy 10 to 21 -17 to 4.5 2 to 7% Thermocouples uV/C 2315C Platinum Resistance 0.4ohms.C -200 to 0.1 to 1 to 3% Thermometers 100ohm 650C 0.25C Nickel Resistance 0.7ohm/C -60 to 0.4C 1 to 5% Thermometers 100ohm 180C Precision Disc -3 to -5 -80 to 0.1 to Inherently Thermistors %/C 150C 0.2C Nonlinear Glass Bead -3 to -5 -60 to Noninter Inherently Thermistors %/C 300C changeable Nonlinear Integrated Circuit 1uA/C or -50 to 0.5 to 0.3 to 3C Sensors 1to 1OmV/C 150C 5C metal film 1% to .001% 100->5ppm/C .1uH and .5pf metal foil 1% to .001% 100->5ppm/C .1uH and .5pf metal film 1% to .005% 5->.5ppm/C .1uH and .5pf wire wound 0.1% to .001% 10->1ppm/C .1mH and 5pf polystyrene 5% to 0.05% -150ppm/C .02uH telfon 20% to 1% -100ppm/C .02uH Mylar 20% to 1% +500ppm/C .02uH ceranmic 20% to 5% +/-30ppm/C .002uH VOLTAGE TEMPERATURE Type K Type R Tungsten vs. Chromel vs Pt-13% Rhodium Tungsten-26% Temper Alumel vs Platinum Rhenium C mV mV mv) -270 -6.548 -200 -5.891 -100 -3.553 0 0 0 0 100 4.095 0.647 0.334 200 8.137 1.468 1.037 400 16.395 3.407 3.339 600 24.902 5.582 6.529 800 33.277 7.949 10.296 1000 41.269 10.503 14.389 1200 48.828 13.224 18.607 1372 54.875 15.639 22.213 1400 16.035 22.792 1600 18.842 26.820 1768 21.108 30.009 1800 30.592 2000 34.022 2200 36.884 2315 38.556 Thermoelectric T = a0 + a1*E + a3*E^3 + ... +an*E^n T = temperature (0C) E = thermoelectric voltage (microvolts) an type-dependent polynomial coefficients n = order of polynomial Conversion, Type K* a0 0.0 a1 1.2329875Xl0-2 a2 -1.4434305x1O-5 a3 -4.2824995X10-9 a4 -4.2028679X10-13 (-270C to 0C with error range -11C to 8C) a0 0.0 a1 2.5I32785x10-2 a2 -6.08334232x10-8 a3 5.5358209x10-13 a4 9.37209l8Xl0-18 (0C to 1370C with error range -2.4C to1.2C ) Thermoelectric-to-Temperature I Conversion, Type J* a0 0.0 a1 1.8843850x10-2 a2 1.2O29733x1O-6 a3 -2.5276593x10-10 a4 -2.5849263x10-14 (-200C to 0C with error range -0.4C to O.5C) a0 0.0 a1 1.9323799x10-2 a2 -1I.0306020x10-7 a3 3.7084018xl0-12 a4 -5.I03I937x10-17 (OC to 760C with error range -0.9C to 0.7C) CHARACTERISTICS 2252-OHM PRECISION THERMISTOR Temperature Resistance Ohms -80 (-112) 1660K -70 (-94) 702.3K -60 (-76) 316.5K -50 (-58) 151.0K -40 (-40) 75.79K -30 (-22) 39.86K -20 (-4) 21.87K -10 (14) 12.46K 0 (32) 7.355K 10 (50) 4.482K 20 (68) 2.814K 25 (77) 2.252K 30 (86) 1.815K 40 (104) 1.200K 50 (122) 811.3 60 (140) 560.3 70 (158) 394.5 80 (176) 282.7 90 (194) 206.1 100 (212) 152.8 110 (230) 115.0 120 (248) 87.7 130 (266) 67.8 140 (283) 53.0 150 (302) 41.9 2-700-SERIES THERMISTOR PAIR Temperature T1 (Ohms) T2 (Ohms) C ~F (6K at 25~C) (30K at 25~C) -30 (-22) 106.2K 481.0K -20 (-4) 58.26K 271.2K -10 (14) 33.20K 158.0K 0 (32) 19.59K 94.98K 10 (50) 11.94K 58.75K 20 (68) 7496 37.30K 30 (86) 4834 24.27K 40 (104) 3196 16.15K 50 (122) 2162 10.97K 60 (140) 1493 7599 70 (158) 1051 5359 80 (176) 753.8 3843 90 (194) 549.8 2799 100 (212) 407.6 2069 PLATINUM AND NICKEL RTD'S (DIN STANDARD 43760) Temperature Platinum Tolerance Nickel Tolerance C Ohms 0C Ohms C -200 18.49 1.3 -100 60.25 0.8 -60 76.33 0.6 69.5 2.1 -50 80.31 0.55 74.3 1.8 0 100.00 0.3 100.0 0.4 50 119.40 0.55 129.1 0.75 100 138.50 0.8 161.8 1.1 150 157.31 1.05 198.7 1.45 180 168.46 1.2 223.2 1.7 200 175.84 1.3 400 247.90 2.3 600 313.59 3.3 800 375.51 4.3 850 380.26 4.55 Temp Heat pumped diff C watts 0 20 20 w heat across 0 degrees .. efficiency low 25 10 10 w heat across 25 degrees efficiency very low 50 0 0 w heat across 50 degress efficiency zero TYPICAL HEAT PUMPING CURVE for a larger thermoelectrIc module. Note that the efficiency goes down as the tempereture differential increases. Heat flux ends up proportional to temperature difference. twice the delta-T for twice watts typical heatsink 2 and 10 degrees Celsius per watt. below 1 degree per watt, forced-air cooling. half a degree per watt,pumped-water cooling system THERMiSTOR CHARACTERISTICS Thermistor Available Mid-Range typIcal Type Resistances Accuracy Temperature Range LowCost l00->200K 5 to 20% -50 to 150 C (1 to 5CC) Precision 100->1M 0.1 to 0.2 -80 to 150 C (0.5 to 1%) Glass Bead 200->1M 20% -60 to 300CC (5 C) Glass Coated 2.2K->30K 0.05 to 0.2 -80 tO 250~ <. (0.2 to 1%) TOTAL THERMAL EiuissivITY OF ELECTRON-TUBE MATEiiIALS. Temperature Thermal Material K Emissivity Aluminum 450 0.1 Anode graphite 1000 0.9 Copper 300 0.07 Molybdenum 1300 0.13 Molybdenum 1300 0.5 quartz-blasted Nickel 600 0.09 Tantalum 1400 0.18 Tungsten 2600 0.30 ----------------------COMPONENTS_PELTIER---------------------- Temp Heat pumped diff C watts 0 20 20 w heat across 0 degrees .. efficnecy low 25 10 10 w heat across 25 degrees efficiency very low 50 0 0 w heat across 50 degress efficiency zero TYPICAL HEAT PUMPING CURVE for a larger thermoelectrIc module. Note that the efficiency goes down as the tempereture differential increases. Heat flux ends up proportional to temperature difference. twice the delta-T for twice watts typical heatsink 2 and 10 degrees Celsius per watt. below 1 degree per watt, forced-air cooling. half a degree per watt,pumped-water cooling system peltier device number of series-connected N- and P-type semiconductors sandwiched between two ceramic plates, flow of majority carriers (electrons or holes) in each semiconductor occurs in a single direction, (hot side) ============================== <-- ceramic __________ __________ | | | | | | | | ^ majority (-)| N | | P | | N | | P | (+) | carrier _|___| |___|__|___| |___|__ flow =============================== <-- ceramic (cold side) device works by depleting cold side of thermally-generated carriers and moving them to the hot side; in essence, the device is a heat pump. If hot side has "beefy" heat sink, temperature difference can be several tens degrees C. process is reversible - temperature difference across the device will cause a voltage to develop across its terminals. Peltier coolers/heaters (From Chris Webster) A typical peltier device consists of a number of series-connected N- and P-type semiconductors sandwiched between two ceramic plates, such that the flow of majority carriers (electrons or holes) in each semiconductor occurs in a single direction, as shown below: (hot side) ============================== <--ceramic /|\ __________ __________ | majority | | | | | | | | | carrier | N | | P | | N | | P | | flow (-) _____|___| |___|__|___| |___|_____ (+) =============================== <--ceramic (cold side) The device works by depleting the cold side of thermally-generated carriers and moving them to the hot side; in essence, device is a heat pump. When a fixed potential is placed across device's terminals, fixed temperature difference will be maintained between the hot and cold sides. If the hot side has a sufficiently "beefy" heat sink, this temperature difference can be several tens of degrees C. The process is reversible -- placing a temperature difference across the device will cause a voltage to develop across its terminals. ----------------------COMPONENTS_COOLING---------------------- TYPES OF COOLING. Average Cooling Specific Dissi Surface Temperature Cooling Surfa Type (0C watts/cm2 Cooling-Medium Supply Radiation 400-1000 4‹10 Water 30-150 30‹110 0.25‹0.5 gallon,minute/kilowatt Forced air 150-200 0.5‹1 50‹150 feet3/minute1 kilowatt Evaporative 100-120 80‹1 Water- air-, or convection-cooled con- denser. A water-cooled condenser would require 0.07‹0.1 gallon/minute/kilowatt Conduction 100-250 5-30 Heat sink operating at 50-1000C can be removed in this manner is given by P=et*sigma(T^4 ‹ T0^4) P= radiated power in watts/centimeter~, et= total thermal emissivity of the surface, sigma= Stefan-Boltzmann constant= 5.07e-12 wattcentimeters ‹2 X degrees Kelvin‹4, T= temperature of radiating surface in degrees Kelvin, T0= temperature of surroundings in degrees Kelvin. Total thermal emissivity varies with the degree of roughness of the surface of the material and the temperature. Values for typical surfaces are in Table 7. Water Cooling circulated through a suitably designed structure. The amount of heat which can be removed by this process is given by P = 264*Q_w(T2-T1) P= power in watts, Qw= flow in gallons pem¹ minute, T2, T1 outlet and inlet water temperatures Kelvin,. This same relationship is given in the nomogram of Fig. 0 with the temperature rise in degrees Fahrenheit or Celsius and the power in kilowatts. Forced Air Cooling With forced air cooling a stream of air forced past a suitable radiator. beat which can be removed by this process is given by P= 169*Q_A[( T_2/T_1) ‹ 1] QA= air flow in Ieet3/mmntrte, other quantities as above. Evaporative Cooling consists of a tube with a specially designed anode immersed in a boiler containing distilled water. When power is dissipated on the anode, the water boils and the steam is conducted upward through an insulating pipe to a condenser. condensate is then gravity fed back to the boiler, thus eliminating the pump required in a circulating water system even with a pump only about 0.05 of the amount of water required for a water-cooled system because exploitation of the latent heat of steam. heat-exchanger is less than one-third mean temperature differential between the cooled liquid and the secondary coolant. Typical temperature differentials for the two systems are 750C and 300C, respectively. anode dissipation should not exceed 135 watts/cm2 external anode surface this point, often referred to as the 'Leidenfrost' or 'calefaction' point, surface completely covered with sheath of vapor thermal conductivity drops to 30 watts/cm2, with resultant overheating of the anode. Special designs of the external anode surface (such as the 'pineapple') allow up to 500 watts/cm2 centimeter internal anodesurface ----------------------COMPONENTS_COOLING---------------------- SUPERcoNDUcTIVITY Critical Temperature NbC 10.10 TaC 9.20 Pb‹As‹Bi 9.00 PbBiSb 8.90 Pb‹Sn‹Bi 8.50 Pb‹As 8.40 Niobium 8.00 MoC 7.70 Lead 7.22 N2Pb1 7.20 Bi6Tls 6.50 Bismuth 6.00 Sb2Tl 5.50 Vanadium 5.10 Tantalum 4.40 Lanthanum 4.37 TaSi 4.20 Mercury 4.152 PbS 4.10 Hg5TI7 3.80 Tin 3.73 Indium 3.37 ZrB 2.82 WC 2.80 Mo2C 2.40 Thallium 2.38 W2C 2.05 Au2Bi 1.84 CuS 1.60 TiN 1.40 Thorium 1.39 VN 1.30 Aluminum 1.20 Gallium 1.10 TiC 1.10 Rhenium 1.00 Zinc 0.91 Uranium 0.80 Osmium 0.71 Zirconium 0.70 Cadmium 0.56 Ruthenium 0.47 Titanium 0.40 Hafnium 0.35 ======================SILICON_THERMAL=========================== Package_Thermals silicon (physical data) Atomic number: 14 Atomic weight: 28.086 Density: 2329 [293 K]; 2525 [liquid at m.p.] kg m-3 Molar volume: 12.06 cm3 Velocity of sound: 2200 m s-1 Hardness Mineral: 6.5 Melting point: 1683K Boiling point: 2628K Thermal conductivity: 148 [300 k] W m-1 K-1 Coefficient of linear thermal expansion: K-1 Water Standard: 2.42W Specific Heat: 0.76joule/gm*C Fusion: 39.6 kJ mol-1 Vaporization: 383.3 kJ mol-1 First find the thermal mass (thermal capacitance) of a 200mil by 200mil by 15mil thick die. __________ / /| 200mils / / / 200mils*25.4u =>.5cm / / / 15mils*25.4u =>.038cm /_________/ / 15mils|_________|/ 200mils 0.5cm*0.5cm*.038cm=.0095cc_Si Silicon Volume .0095cc*2.42Water= .0229gm Thermal Mass 0.0229gm*0.76joule/gm*C =.0174J/deg_C In other words, it takes about 1/60 of a Joule to raise the chip temperature 1deg_C. The package in still air can have a thermal resistance around 200deg_C/W. So there is nothing stopping the modeling of the packaged silicon as a thermal RC. Applying 25mW for 1sec is 25mJoules. You would expect the die temperature to increase 1.47deg_C over that time. 1sec / __ 200deg_C/W _/ ____| |_________/\ /\___ _|_ |__| _|_ \/ | / _ \ ___ | Tau = R*C \/ \/ ^ 25mW | 17.4mJ/deg_C| /\_/\ /|\ | | \___/ | _|_ _|_ _|_ /// /// /// Tau_still_air = 200deg_C/W * 17.4mJ/deg_C = 3.5seconds Of course any air movement across the package will greatly influence this time constant. plastic dip 100C/W to5 120C/w cer dip 70C/w Si melt 1420C Cu melts 1083 Gold 1030 Alum 660 Si storaage 300 50/50 solder melts 200 indium melts 156 Silcon operates 175 mil spec 155 -65 industrial 125 -25 commerical 85 0C Rth of square_Si 56C/W to 70C/W drops 13.6db per thickness distance about 12dB/10mils drops 86.6% per mil fusing current I Konstant*Dia_in^(3/2) Konstant cu 10244 gold 1mil 1Amp Fusing Currents Wires in amperes which wire melt calculated from I = K*d^(3/2) FUSING CURRENTS IN AMPERES. AWG B & S Diam d Copper Alumin GermSilv Iron Tin Gauge Inches K=10244 K=7585 K=5230 K=3148 K=1642 40 0.0031 1.77 1.31 0.90 0.54 0.28 38 0.0039 2.50 1.85 1.27 0.77 0.40 36 0.0050 3.62 2.68 1.85 1.11 0.58 34 0.0063 5.12 3.79 2.61 1.57 0.82 32 0.0070 7.19 5.32 3.67 2.21 1.15 30 0.0100 10.2 7.58 5.23 3.15 1.64 28 0.0126 14.4 10.7 7.39 4.45 2.32 26 0.0159 20.5 15.2 10.5 6.31 3.29 24 0,0201 29.2 21.6 14.9 8.97 4.68 22 0,0253 41.2 30.5 21.0 12.7 6.61 20 0,0319 58.4 43.2 29.8 17.9 9.36 19 0 0359 69.7 51.6 35.5 21.4 11.2 18 0.0403 82.9 61.4 42.3 25.5 13.3 17 0.0452 98.4 72.9 50.2 30.2 15.8 16 0.6508 117 86.8 59.9 36.0 18.8 15 0.0571 140 103 71.4 43.0 22.4 14 0.0641 166 123 84.9 51.1 26.6 13 0.0719 197 146 101 60.7 31.7 12 0.0808 235 174 120 72.3 37.7 11 0.0907 280 207 143 86.0 44.9 10 0.1019 333 247 170 102 53.4 9 0.1144 396 293 202 122 63.5 8 0.1285 472 349 241 145 75.6 7 0.1443 561 416 287 173 90.0 6 0.1620 668 495 341 205 107 ------------------------------------------------------------- Gold in plastic 2mile 100% 5Amps 14% dc faile 5.5Amps 63% failure 6Amp (.5 to 3sec) 29% survival 8Amp 1mil gold 1-1.5Amp 3mil gold 100% 8amps plastic dip 100C/W to5 120C/w cer dip 70C/w Si melt 1420C Cu melts 1083 Gold 1030 Alum 660 Si storaage 300 50/50 solder melts 200 indium melts 156 Silcon operates 175 mil spec 155 -65 industrial 125 -25 commerical 85 0C Rth of square_Si 56C/W to 70C/W drops 13.6db per thickness distance about 12dB/10mils drops 86.6% per mil fusing current I Konstant*Dia_in^(3/2) Konstant cu 10244 gold 1mil 1Amp Fusing Currents Wires in amperes which wire melt calculated from I = K*d^(3/2) FUSING CURRENTS IN AMPERES. AWG B & S Diam d Copper Alumin GermSilv Iron Tin Gauge Inches K=10244 K=7585 K=5230 K=3148 K=1642 40 0.0031 1.77 1.31 0.90 0.54 0.28 38 0.0039 2.50 1.85 1.27 0.77 0.40 36 0.0050 3.62 2.68 1.85 1.11 0.58 34 0.0063 5.12 3.79 2.61 1.57 0.82 32 0.0070 7.19 5.32 3.67 2.21 1.15 30 0.0100 10.2 7.58 5.23 3.15 1.64 28 0.0126 14.4 10.7 7.39 4.45 2.32 26 0.0159 20.5 15.2 10.5 6.31 3.29 24 0,0201 29.2 21.6 14.9 8.97 4.68 22 0,0253 41.2 30.5 21.0 12.7 6.61 20 0,0319 58.4 43.2 29.8 17.9 9.36 19 0 0359 69.7 51.6 35.5 21.4 11.2 18 0.0403 82.9 61.4 42.3 25.5 13.3 17 0.0452 98.4 72.9 50.2 30.2 15.8 16 0.6508 117 86.8 59.9 36.0 18.8 15 0.0571 140 103 71.4 43.0 22.4 14 0.0641 166 123 84.9 51.1 26.6 13 0.0719 197 146 101 60.7 31.7 12 0.0808 235 174 120 72.3 37.7 11 0.0907 280 207 143 86.0 44.9 10 0.1019 333 247 170 102 53.4 9 0.1144 396 293 202 122 63.5 8 0.1285 472 349 241 145 75.6 7 0.1443 561 416 287 173 90.0 6 0.1620 668 495 341 205 107 ------------------------------------------------------------- Gold in plastic 2mile 100% 5Amps 14% dc faile 5.5Amps 63% failure 6Amp (.5 to 3sec) 29% survival 8Amp 1mil gold 1-1.5Amp 3mil gold 100% 8amps ------------------------------------------------------------- Si 1.00 to 1.46 Watts/cm*C GaAS 0.44 Cu 4.05 Gold 3.09 BeO 2.34 Kovar 0.2 Silver 4.14 saphire 0.25 Al2O3 0.188 ======================COMPONENTS_THERMOCOUPLE=============================== Type Materials Color Tem J +iron-constantan white/red 0C =>75C K +NiChrom-NiAl Yellow/red -20C =>125C T +copper-constantan blue/red -20C =>35C E +NiChrom-copperNi purple/red -20C =>90C S +PlatinRhoduium-Platin black/red 0C =>145C R +PlatinRhoduium-Platin black/red 0C =>145C B +PlatinRhoduium-Platin black/red 0C =>170C Cu-Ag 0.3uV/C Cu-Au 0.3uV/C Cu-cd Sn 0.3uV/C Cu-Pb/Sn 2uV/C Cu-Si 400uV/C Cu-kovar 40uV/C Brass 3.9 0.002 (66 Cu 34 Zn) Chromax 100 3E-04 (15 Cr 35 Ni 50 Fe) Constantan 44.2 2E-04 (55 Cu 45 Ni) German Silv 33 4E-04 (18 Ni) Kovar A 45-85 (29Ni 17Co .3Mn 46Fe) Nichrome 100 2E-04 (65 Ni 12 Cr 23 Fe) Steel 13-22 0.003 (.4 C) Stainless 90 (.1C 18 Cr 8 Ni) Thermoelectric T = a0 + a1*E + a3*E^3 + ... +an*E^n T = temperature (0C) E = thermoelectric voltage (microvolts) an type-dependent polynomial coefficients n = order of polynomial Conversion, Type K* a0 0.0 a1 1.2329875Xl0-2 a2 -1.4434305x1O-5 a3 -4.2824995X10-9 a4 -4.2028679X10-13 (-270C to 0C with error range -11C to 8C) a0 0.0 a1 2.5I32785x10-2 a2 -6.08334232x10-8 a3 5.5358209x10-13 a4 9.37209l8Xl0-18 (0C to 1370C with error range -2.4C to1.2C ) Thermoelectric-to-Temperature I Conversion, Type J* a0 0.0 a1 1.8843850x10-2 a2 1.2O29733x1O-6 a3 -2.5276593x10-10 a4 -2.5849263x10-14 (-200C to 0C with error range -0.4C to O.5C) a0 0.0 a1 1.9323799x10-2 a2 -1I.0306020x10-7 a3 3.7084018xl0-12 a4 -5.I03I937x10-17 (OC to 760C with error range -0.9C to 0.7C)