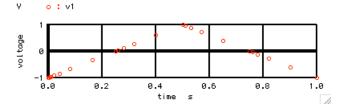

*======Transient Timing PWL 100msec======

A PieceWise Linear waveform appears to add extra timing points after every time point.

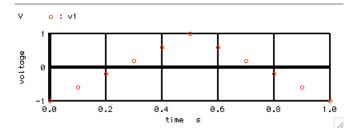
```
*V PWL#
                                                                                      ...>)
.75 0 1 -1 )
         NODE_P NODE_N DC
                                VALUE
                                        PWL (
                                                     V1
                                                          T2
                                                                  V2
                                                                       Т3
                                                                               V3
V_PUL
                 0
                        DC
                                0
                                        PWL(
                                               0
                                                          . 25
                                                                  0
                                                                       .5
                                                                               1
         TSTEP
*TRAN
                TSTOP
                       TSTART TMAX
                                        ?UIC?
.tran
         100m
                        0
                                100m
```


The change in timing is not as much as for a square-wave.

This is where being able to view timing in orders of magnitude comes in handy.

```
let
        num = length(time)-2
compose dtime start = 0 stop = $&num step =1
compose rtime start = 0 stop = $&num step =1
        i = 0
let
repeat
       $&num
let
        i = i + 1
let
        dtime[i] = time[i +1] -time[i]
        rtime[i] = time[i]
let
end
        dtime2 = abs(dtime)+100u
let
plot
        dtime2 vs rtime ylog
```

The timing is only changing an order of magnitude. But it is enough to effect the RMS value.



INPUT RMS PWL prelinear = 0.76695

The Linearize statement will make the waveform to be near perfect. But there is still the same increase in points at the beginning of the waveform. This will affect the RMS value which should be 0.5773502691896258

```
linearize
plot v1 pointplot
let vrms1_cdhw = sqrt(mean(v1*v1))
echo "INPUT RMS PWL postlinear = $&vrms1_cdhw"
```


INPUT RMS PWL postlinear = 0.64667

```
=======Full_Netlist_For_Copy_Paste================
```

```
RMS_PWL_!00ms
.Option srcsteps = 1 set Gmin = 1.0000E-02
*=====Circuit_Netlist======
V PUL
                     DC
                                   PWL( 0 -1 .25 0 .5 1 .75 0 1 -1 )
*TRAN
        TSTEP TSTOP TSTART TMAX ?UIC?
.tran
        100m 1
                     0
.control
run
        pensize = 2
set
               pointplot
plot
        v1
        v1
plot
let
        vrms1_cdhw = sqrt(mean(v1*v1))
echo
        "INPUT RMS PWL prelinear = $&vrms1_cdhw"
        num = length(time)-2
compose dtime start = 0 stop = $&num step =1 compose rtime start = 0 stop = $&num step =1
let
        i = 0
repeat
        $&num
         i = i + 1
let
        dtime[i] = time[i +1] -time[i]
rtime[i] = time[i]
let
let
end
let
        dtime2 = abs(dtime)+100u
        dtime2 vs rtime ylog
plot
linearize
plot
        v1
               pointplot
let
        vrms1_cdhw = sqrt(mean(v1*v1))
       "INPUT RMS PWL postlinear = $&vrms1_cdhw"
echo
        num = length(time)-2
compose dtime start = 0 stop = $&num step =1
compose rtime start = 0 stop = $&num step =1
        i = 0
```

```
repeat $&num
let    i = i +1
let    dtime[i] = time[i +1] -time[i]
let    rtime[i] = time[i]
end

plot    dtime vs rtime
.endc
.endc
.end
```

7.12.10_10.31AM dsauersanjose@aol.com Don Sauer http://www.idea2ic.com/